

Supplementary Information for

Estimating geographic subjective well-being from Twitter: a comparison of dictionary and
 data-driven language methods

5 Kokil Jaidka, Salvatore Giorgi, H. Andrew Schwartz, Margaret L. Kern, Lyle Ungar and Johannes C. Eichstaedt

6 Kokil Jaidka, Johannes C. Eichstaedt.

7 E-mail: jaidka@nus.edu.sg, johannes.stanford@gmail.com

8 This PDF file includes:

- ⁹ Supplementary text
- ¹⁰ Figs. S1 to S4

1

- 11 Tables S1 to S20
- 12 References for SI reference citations

13 Supporting Information Text

¹⁴ Across all the Figures and Tables in this study, significant correlations have been denoted by using a red/green shaded cell, ¹⁵ where the gradient of the red/green shade denotes the strength of the negative/positive correlation. Significance was calculated

row-wise, after Benjamini-Hochberg correction ($p \le .05$) was applied over all the language features and covariates reported in

17 any given row.

18 Dataset statistics

Figure S1 details sample composition and drop-out for US counties. Only counties with 300 or more responses during the 2009-2015 time period were selected. Responses with incomplete demographic information were filtered out (to allow for post-stratification based on age, gender, income, and education), resulting in fewer than 300 responses per county in some cases (a total loss of 1.6% of participants). Of 3,142 US counties, 1,208 counties had sufficient Twitter and Gallup data and were included in the study. Table S1 describes the average, median, and range of respondents per county. The Table also provides the survey items that were used to measure well-being within the Gallup Sharecare well-being Index (1), and indicates the response scale, mean and standard deviation per item.

26 Description of the language-based methods

27 Word-level methods measure emotion or well-being by counting the relative frequency of usage of words arranged in different

categories. For example, the Linguistic Inquiry and Word Count (LIWC) 2015 (2) or the PERMA dictionaries (3, 4) comprise

words organized to capture linguistic, psychological, or cognitive constructs. The list of words and valence, arousal, and

dominance scores in the Affective Norms of English Words (ANEW) (5), Warriner's extended ANEW (6), and Language Assessment by Mechanical Turk (LabMT) (7) were created based on an average or agreement among multiple annotators, who

32 labeled individual words for their emotional content.

In sentence-level methods, supervised machine learning models infer word-level emotion or well-being ratings from corpora

of annotated sentences. The WWBP Affect lexicon (2), National Research Council's Hashtag Emotion lexicon (8) and Swiss Chocolate (9) are examples of sentence-level methods for measuring emotion.

³⁶ In person-level methods, survey respondents who self-report their Life satisfaction scores also share their social media posts,

³⁷ thus producing a language corpus labeled with the survey-based Life satisfaction of their authors. Supervised language models

are then trained on the linguistic features extracted from the corpus to identify a list of significant features and corresponding

weights. We evaluate such a model, trained on the social media language associated with self-reported responses to the Cantril

⁴⁰ Ladder Life Satisfaction question in an online survey administered through Qualtrics to a random sample of 2,143 Facebook

users out of a larger sample of 2,321 users; the data collected are described in a subsequent section. The data for N = 178

⁴² users were held out for validation purposes. A few previous studies (10, 11) have explored the use of person-level models of ⁴³ personality and stress trained on individuals' social media posts for predicting their regional variations across the United States;

however, to our knowledge, no similar study has been conducted for estimating regional well-being.

⁴⁵ Details on the extracting emotion measures from language.

Word-level methods. We calculated the county estimates by adding the word counts of words contained in the respective
 dictionaries. Wherever methods provided valence or affect scores, we used them as weights. The LabMT valence dictionary
 contained continuous valence scores for words derived from annotators (ranging from 1 to 9), which we mean-centered.

Supervised sentence-level methods. Pre-trained classifiers and language models trained on labeled social media posts can predict the emotion labels of text as a function of its words. In the case of the WWBP Affect model (12), linguistic features at the post level are typically sparser than at other aggregation levels (e.g., a single post vs. the user's entire timeline of posts); accordingly, word features were binary-encoded (1 if the word was present in the post, 0 if not). We took the total number of times a user mentioned a specific word and normalized it by their post count. Finally, user-level features were averaged to the county level.

Supervised Person-level methods. Individuals' social media language were labeled according to their self-reported Life satisfaction measured by Cantril's Ladder. This method is thus more directly targeted at measuring evaluative well-being, as compared to the emotion-focused word- and sentence-level methods. We extracted 2,000 topics from the social media posts of the Facebook users in our sample. The topic features were available from previous work (13, 14) and were derived via Latent Dirichlet Allocation (LDA) (15) over a large Facebook corpus. We then trained a language model comprising these topics against the survey-reported Life satisfaction scores of 2,143 Facebook users (described in further detail below). We call this the WWBP

Life satisfaction model and subsequently used this model to predict the well-being for each county in our Twitter sample. Some words and discourse features, such as 'RT' and '#,' are more likely to occur on Twitter than on Facebook. Differences also arise when different social media platforms differ in their technological and social affordances, leading to differences in emotional expression (16), and the quality of communication (17). Consequently, the predictive performance of language models may change when they are applied to predict user traits from the language of a different domain. Some studies at the user-level have reported that there is a marginal *improvement* in predicting user traits when the validation data comprises Twitter posts if the pre-trained language models are trained on Facebook rather than Twitter posts (16, 18). In contrast, other

studies have reported a drop in performance of 2-10% when models trained on Facebook were applied to Twitter to predict

users' age and gender, and vice-versa (19). At the regional level, previous work has reported only a small effect of normalizing word frequency distributions on the ultimate predictive performance (10). Given the mixed findings, in the present scenario,

we evaluated the effect of cross-platform prediction by training two language models on smaller subsets of 522 users from our Qualtrics panel (described in detail below), for which their Twitter posts were also available, and their posts included at least

⁷² 500 words each on Facebook and Twitter. For these 522 users, we trained two language models against their survey-reported

⁷³ Life Satisfaction, once taking only their Facebook posts and then taking only their Twitter posts. Then, we applied these

⁷⁴ models to predict Gallup Life Satisfaction at the county level, as before. Table S2 reports the correlations between the Gallup

vell-being outcomes and the values predicted by the two comparable language models. The resulting pattern of correlations is

very similar (e.g., the person-level model trained on Facebook language and applied to county Twitter data reaches r = .38correlation with county Gallup Life Satisfaction, compared to r = .33 for the person-level Twitter model). Thus, we observed

⁷⁷ correlation with county Gallup Life Satisfaction, compared to r = .33 for the person-level Twitter model). Thus, we observed
 ⁷⁸ no performance degradation when applying Facebook models to Twitter as compared to applying Twitter models to Twitter
 ⁷⁹ language.

Direct prediction. We trained a predictive model to directly predict county-level well-being by training a language model comprising the language features representing each county's Tweets. All predictions were made for counties other than the ones used to train the model in a 10-fold cross-validation framework.

Experimental setup for direct prediction methods. We used a 10-fold cross-validation framework: over ten iterations, we trained 83 ten language s on 90% of the counties and evaluated the accuracy of its predictions on a held-out 10% of the counties. Finally, 84 we report the predictive performance as Pearson's correlations between all the predictions on held-out counties, and the 85 county-level Gallup well-being scores. To reduce the high dimensionality of the language feature space, we used a combination 86 of feature selection, principal components analysis, and ridge regression to avoid overfitting models. We first removed all 87 features whose distributions did not correlate with the outcome at a family-wise error rate alpha of 0.60 and then conducted 88 randomized principal component analyses to reduce the dimensionality of the features. The resultant principal components 89 were used as predictors in ridge regressions. 90

As shown in Table S3c, four models were evaluated using a combination of socioeconomic, LIWC-based features, words, and 91 LDA topics (statistically derived sets of words that tend to co-occur (15)); as the independent variables in separate models 92 and considered Life satisfaction as the dependent variable. Model 1 (SES) only included the socioeconomic index ⁱ. Model 2 93 (All LIWC dictionaries) used all the 73 LIWC dictionaries with ridge regression. Model 3 (All language) used all the LDA 94 topics with ridge regression, with the feature reduction steps. Model 4 (All language + SES) combined the socioeconomic 95 variables with the predictors of model 3. In model 4, we first trained ordinary least square models on the socioeconomic index. 96 Next, we trained the ridge regression model by using Twitter language to predict the residuals of the first model, to distinguish 97 the contribution of the single socioeconomic index from the many Twitter features, and to identify the actual contribution of 98 the Twitter language over and above socioeconomic factors. The predictions on held-out data were evaluated as Pearson's 99 correlations with the four Gallup county outcomes (Life satisfaction, Happiness, Worry, and Sadness). 100

Predictive Performance Evaluation. The predictive performance of all four model classes was evaluated as Pearson's correlations between the predicted well-being and the actual Gallup well-being outcomes. In the case of the person-level and county-level language models, Pearson's correlations were calculated between the model predictions and survey-reported outcomes over the ten folds of held-out data. The significance of the differences between the models' performance was assessed using a paired t-test over the magnitude of the models' residuals. We anticipated that Life satisfaction and Happiness would be positively associated with the use of positive emotion words in social media posts. In contrast, Sadness and Worry would be negatively associated with the use of positive emotion words and positively associated with negative emotion words.

Predictive Performance Detailed Results. Table S3 provides detailed results in terms of the predictive performance of Twitter based well-being measurements, measured as Pearson's correlation against the Gallup poll results across 1,208 counties. The
 choice of language analysis technique can play an important role in the accuracy in measuring psychological constructs.

Table S3a extends the results presented in Table 2 and includes the predictions based on the extended Warriner's lexicon. Among the methods using positive emotion, the PERMA Positive emotion measure was the best estimator of emotion at predicting Life satisfaction. In Table S3b, the Anticipation sentence-level model from the NRC Hashtag Emotion lexicon demonstrated the best performance at predicting Life Satisfaction (r = .38, p < .001).

Table S3c shows the results from direct prediction – a Pearson's correlation over the ten (held out) folds for models trained on all of the LIWC features, and the entire county-level vocabulary in the 2000 topics pre-trained on a social media corpus by previous work (13). Language models trained on the 2000 LDA topics predicted well-being at r = .51 to .64 (p < .001). Twitter county language significantly improved upon SES-based predictions for Happiness, Worry, and Sadness. The Table also shows that using all the LIWC categories in a direct prediction method led to a model with performance comparable to the model based on all Twitter language modeled as LDA topics (r = .46 to .58, p < .001).

121 Generalizability to other county-level socioeconomic and health outcomes

As a test of robustness, we tested the extent to which data-driven methods outperformed other methods for predicting other county-level demographic outcomes and health factors.

ⁱSee Table S4 for details on socioeconomic index

Health Data. The Behavioral Risk Factor Surveillance System (BRFSS) is a population-based cross-sectional telephone and cell
 phone health survey of adults in the US aged over 18 years. We obtained the following health factors corresponding to health
 and mortality. Information about these outcomes and transformations applied are provided in Table S4:

- % fair or poor health
- All-cause mortality
- Mentally unhealthy days

130 Census data obtained from the 2015 American Community Survey's five-year estimates (20) were used as controls.

Socioeconomic index. Studies have identified strong associations between socioeconomic status and Life satisfaction (21, 22) but generally weaker or curvilinear associations between socioeconomic status with affective well-being (23). We created a socioeconomic index as a baseline to understand the predictive power of county socioeconomics and the relative accuracy provided by Twitter measurements over and above this baseline. We obtained the county-level socioeconomic factors from the American Community Survey's five-year estimates, with the percentage of the population with a bachelor's degree or higher and the median per capita income. Because income and education are highly correlated, we created a composite county-level socioeconomic index by first standardizing and then averaging these measures (analogous to (24)).

Generalizability Supplemental Results. Table S5 shows the correlations between Twitter-based emotion measurements and 138 county-level health outcomes. We observed correlation patterns very similar to the previous results: estimates from supervised 139 language models at the post-level, person-level, and county-level showed the strongest correlations with a variety of demographic 140 and health outcomes. As seen in our prior results, against expectation, counties with higher LIWC positive emotion scores or 141 higher LabMT scores were more likely to suffer from poor health (r = .37 and r = .25, p < .001) and higher mortality (r =142 .26 and r = .32, p < .001). Annotation-based models, such as the WWBP Affect and the Swiss Chocolate models, reported 143 moderate associations with county demographics and health outcomes in the expected directions. Higher positive emotion 144 correlating with higher socioeconomic status (r = .39 and r = .40 respectively, p < .001) and better health (r = -.26 and r145 = -.33 against fair/poor health, p < .001). Finally, the direct prediction models offered a greater improvement over other 146 methods as compared to the prediction of well-being ($|\mathbf{r}| > .51$, $\mathbf{p} < .001$). As the general pattern of findings replicates to other 147 socioeconomic and health variables at the county level, we conclude that our main takeaways are not contingent on the specific 148 choice of Gallup well-being outcomes. 149

150 Correcting for Sample Differences

Even with 1.73 million responses over eight years, Gallup's daily surveys offer insufficient data for estimation of county-level
well- being in most US counties. Figure S2 shows the Life satisfaction scores for the 1,208 US counties (of 3,142 total counties)
for which at least 300 responses were available between 2009 and 2015. A skew in the coverage created a convenience sample
with certain demographic biases.

When missing or non-representative data is correlated with a target outcome, then excluding observations can lead to false 155 inferences (25). Non-responses create systematic biases in the sample when they are correlated with differences in well-being. 156 We tested for a non-response bias by correlating the presence or absence of counties in our Gallup and Twitter datasets. 157 Table S6 shows the likelihood of a county with a higher percentage of a demographic attribute of being present in the initial 158 Gallup, the initial Twitter dataset, and the final, filtered dataset of 1208 counties used in the current paper. The negative 159 correlation with % rural population (r = -.61 among Gallup counties; r = -.60 among Twitter counties, p < .001) implies that 160 both Gallup and Twitter were likely to under-represent counties with a larger rural population. The negative correlation with 161 % male population (r = -.20 among Gallup counties; r = -.22 among Twitter counties, p < .001) implies that both Gallup and 162 Twitter were likely to under-represent counties with a larger male population. Gallup is more likely to over-represent counties 163 with a higher percentage of individuals with a college degree than Twitter (r = .39 among Gallup counties, r = .20 among 164 Twitter counties, p < .001). Twitter also over-represented counties with a higher black population (r = .14 among Twitter 165 counties, p < .001). It is essential to consider these biases before making inferences about other populations, based on our 166 findings. 167

Post-stratification. The populations of users in the Gallup and Twitter datasets are notably different, and potentially unrepresentative of the US population. Therefore, we tested the impact of post-stratification of both samples by age, gender, income, and education to match the county-level population distributions, as per the US Census (cf. (26)).

Post-stratification attempts to remove selection bias by taking a weighted average of individual-level responses, such that individuals are under (or over) represented in the sample are up (or down) weighted in the average (27–30). Weights are created by taking the ratio of a known population distribution (in this case, the US Census) to the sample distribution (in this case, Gallup and Twitter). If a particular auxiliary variable is under-represented in the sample, then the ratio (or weight) will be higher than one, in effect, treating this particular group of people as more important. Similarly, if the auxiliary variable is over-represented, then the weight will be less than one, and this group of people will be less important.

Both the county level Twitter and Gallup data were post-stratified using a raking algorithm across four auxiliary variables (age, gender, income, and education) (31). Raking is a widely used form of post-stratification, specifically used when correcting

for multiple auxiliary variables, and their full joint distribution is not known (31-34). In practice, full joint distributions are rarely known, even for a small number of auxiliary variables. In our case, information was unavailable for the full distribution of age \times gender \times income \times education. The raking process iteratively estimates the full joint distribution using the marginal distributions for each of the auxiliary variables. For example, raking produces a joint distribution of age \times income from an age distribution and an income distribution. It is important to note that these distributions are not continuous probability distributions, but rather percentages of the population within specific bins.

Gallup The known population distribution data was downloaded from the 2015 American Community Survey (5-year estimate) (35). While post-stratification was run independently for each county, we determined the number and size of bins by terciling national-level data for age, income, and education, and splitting gender into percentages of females and males. The national-level terciles gave us the final bin boundaries: age - 20 to 39, 40 to 54 and 55 or older; *income* - \$0 to \$34,999, \$35,000 to \$74,999 and \$75,000 or higher; *education* — high school diploma or less, some college but less than a Bachelor's degree and a Bachelor's degree or higher.

For each participant in the Gallup survey, we had self-reported age, gender, income, and education. Age is a continuous variable, gender is binary (female/male), and both income and education are ordinals. The income ordinals were mapped to terciles as follows: \$720 to \$35,999 (to the first Census tercile; \$0 to \$34,999), \$36,000 to \$59,999 (to the second Census tercile; \$35,000 to \$74,999) and greater than \$60,000 (to Census \$75,000 or higher). The education ordinals mapped directly onto the census categories.

Twitter The Twitter sample data uses the County Tweet Lexical Bank (36). This dataset consists of roughly 6 million geo-located (to US counties) Twitter users. Each user posted at least 30 tweets, and each county contained at least 100 such users. For each Twitter user, we estimated age (continuous), gender (binary female/male), income (continuous), and education (binary below/above Bachelor's degree) from their tweet text (19, 26, 37). Accuracies of the language models are provided in Table S7.

Unlike with the Gallup data, we did not use National level terciles for the Twitter dataset. Instead, we used all bins as reported by the US Census (11 bins for age, 2 for gender, 10 for income, and 2 for education). Again, we used the 2015 American Community Survey (5-year estimate) as our known population data. To account for sparsity in our sample (i.e., socio-demographic bins in which none of our Gallup or Twitter users mapped), we used a minimum bin percentage threshold of 20%. That is, if a given bin did not contain at least 20% of our Twitter sample, the bin was combined with the adjacent bin. This process was repeated until all bins met the threshold or two bins remain. This was done independently for each county. As a result, each county was potentially post-stratified on a different number of bins.

Post-stratification bin percentages Tables S8a and S8b report average county bin percentages as reported from the US Census and our samples (Gallup and Twitter), before and after post-stratification. Since each auxiliary variable in the Gallup data set starts with at most three bins, we can easily calculate average county percentages, despite the binning process. On the other hand, the age and income Twitter data start with over ten bins, as opposed to three in the case of Gallup, which are collapsed independently across counties. Since each county post-stratifies on different numbers of age and income bins (between 2 and 10) and averages are calculated over a fixed bin size, we only report gender and education for Twitter. Full details of the Twitter post-stratification can be found in Giorgi et al. (26).

Table S9 summarizes the results of well-being prediction after post-stratification on the Gallup or Twitter data. The results are similar to the main results reported before stratification, both in direction and magnitude; the marginal effect of post-stratification suggests that our findings are robust.

The poststratification process relies heavily on accurately estimating sociodemographics from language. Noisy estimates 218 about these factors can amplify errors in subsequent steps. This may occur due to 1) non-representative training data in the 219 models and 2) regularization in the models, which will shrink the predicted distribution towards the mean of the training 220 data. These issues were explored in (26). The authors showed that noisy person-level models led to a decrease in predictive 221 performance at the county-level only when the number of demographics bins used in the post-stratification was large. Specifically, 222 performance decreased when post-stratifying on age and income, both of which had at least ten demographic bins, whereas 223 post-stratifying on gender and income (each with two bins) did not affect performance. In the current study, we used terciles 224 for each of our four variables (age, gender, income, and education), which should have minimized the downstream effects of 225 the noisy models. Note that the noisier the models, the harder the prediction task, that is, the lower the observed prediction 226 accuracies. However, we did not observe significantly decreased performance with the terciled socio-demographic bins that 227 made our training data more representative, alleviating concerns about excessive noise in the models. 228

229 Controlling for confounds

To test the robustness of our findings, we entered age, gender, state, and region dummies, as well as a socioeconomic index as covariate control variables into the language regressions. Table S10 summarizes the results of well-being prediction at the county-level, as a partial correlation controlling for region, age, and socioeconomic status. Region information was encoded as four census 'regions' (20) and 50 binary variables indicating the county's state. Age information comprised two variables denoting the percentage population under 18 years and the population over 65 years in the county. Socioeconomic status was encoded as the socioeconomic index described in Table S4.

Table S10 shows that patterns of language correlations were robust after controlling for demographic, and regional covariates, but largely did not account for variance in Life Satisfaction over and above socioeconomic status. Twitter is a strong direct predictor of socioeconomic status in a cross-validation framework (r = .85 (p < .001) as in the last column of Table S5). Some

of the word- and data-driven methods (e.g., LabMT, WWBP Affect, and Swiss Chocolate) capture variance in Happiness over

 $_{\rm 240}$ $\,$ and above socioeconomic status.

241 Stability over time

We examined whether the main findings replicate across two different periods: 2012-2013 and 2015-2016. For the years 242 2015-2016, we relied on additional data that was not a part of our initial dataset but was constructed the same way (a 10% 243 random geotagged Twitter sample). First, we used the subset of Gallup and Twitter data which spanned 2012-2013, creating 244 Gallup and language estimates across that time span. Next, we replicated our correlation analysis for 373 counties for which 245 there was sufficient Gallup data and language available in 2012-2013, with the availability of the Gallup data limiting the data 246 set more substantially. Next, we followed the same procedure data from 2015-2016. Finally, we compared the performance of 247 language models trained on the 2012-2013 Twitter language which we applied to (and evaluated against) data from 2015-2016. 248 Table S11 summarizes the replication analysis performed on a subset of 373 counties from our main set of 1,208 counties. 249 First, we reproduced the main results from Table 2 for comparison. We then reported the main results on a subset of 373 250 counties for which sufficient Twitter language was available in 2012-2013, and again in 2015-2016 (which is not included in our 251 primary dataset). The results showed a pattern of correlations consistent with the main results, and across the two spans. 252 Table S11 also shows that when predicting county well-being for a future time span (i.e., 2015-2016), the language models 253 trained on 2012-2013 performed at par with language models trained on 2015-2016. This indicates that the changes in language 254 use between 2013 and 2015 accounted for a very small difference in predictive performance, which lay within the confidence 255 bounds of predicting with models trained on the language of the same year. These analyses suggest that our findings were 256 robust at least across the time spans we were able to sample in this study. 257

258 Validation at the Individual Level

We evaluated whether our results replicated at the individual level – i.e., whether supervised models outperformed theory-based
 dictionaries for well-being prediction from social media language.

Data. We recruited adults in the United States to respond to a well-being survey via Qualtrics. This study was approved by the 261 Institutional Review Board at the University of Pennsylvania. Our survey comprised demographic questions (age, gender, race, 262 education, and income brackets as per the items in the National Census) and well-being items identical to the Gallup well-being 263 questions (see Table S1). The question order was randomized. Our analysis is based on 2,321 individuals who consented to 264 share their Facebook data and had posted at least 100 posts on Facebook. Summary statistics about the participants are 265 provided in Table S12. By running ordinary least squares regression analysis between survey responses on well-being items 266 and the language of Facebook posts, we validated the robustness of our findings at the user level and across two social media 267 platforms. 268

Language features were derived using similar steps for tokenization and topic extraction as was carried out at the county level. Emotion measurements based on theory-based, word-level annotations, and post-level annotations were obtained and compared against survey-based language modeling using 2,000 topic features. In the case of the survey-based model, predictive performance was reported as the average Pearson's r on the held out observations in a ten-fold cross-validation setting (the *Direct prediction* column in Table S13), following the same feature selection and dimensionality reduction pipeline as applied at the county level.

Individual Level Results. Table S13 summarizes the results of well-being prediction at the individual level in the Qualtrics
 Facebook dataset. We see that trends similar to the county-level findings are observed in the Qualtrics Facebook dataset.

Overall, the best-performing model was the direct prediction model (r = .26, p < .001). Word-level methods, which were intended for person-level analyses, performed somewhat better at the individual level than at the county level, but LIWC's positive emotion dictionary had no significant correlation with survey-measured Happiness. The PERMA lexicon was better able to predict Life satisfaction at the individual level. A language prediction model based on 2,000 topic features from the language of 2,143 users was trained on the survey-reported Life satisfaction scores, validated on the held-out set of 178 users, and subsequently applied to the county-level as the 'person-level life satisfaction' model.

We conducted an error analysis at the individual level. We did not observe the same pattern of unexpected word correlations at the individual level as we did at the county level. This pattern suggests that the errors observed at the county-level may be mostly due to ecological influences across counties, due to socioeconomic gradients and cultural differences in language use.

286 Error Analysis

We conducted a posthoc diagnostic analysis of the word-level methods that focused on word correlations, highly frequent words, erroneous positive emotion words, and context effects.

²⁹⁹ Word correlations. We identified the most frequent words significantly correlated with Gallup Happiness (p < 0.05 with Benjamini-²⁹⁰ Hochberg correction). We devised a language confusion matrix to visualize the positive and negative words with correlations ²⁹¹ with Gallup Happiness opposite to expectation.

Highly frequent words. As dictionary frequencies are disproportionately determined by the most highly frequent words, we 292 investigated if removing the most frequent words changed the pattern of correlations in the expected direction. For the LIWC 293 2015 positive emotion dictionary, we removed the three most frequent words that appeared on Twitter: 'lol,' 'love,' and 'good.' 294 Weighted by valence, 'love' and 'good' were also the most frequent words in the positive part of the ANEW dictionary, so we 295 296 removed these as well during the modification (it did not contain 'lol'). The positively-valenced part of the LabMT dictionary 297 (valence > 6, following (7)) similarly contained 'lol,' 'love,' and 'good' among the most frequent – but we also observed that pronouns were included in the dictionary even after following Dodds et al. (7) in removing the words with valence 4 to 6. 298 Subsequently, we used the LIWC pronoun dictionary to filter out pronouns, removing the following words: 'me,' 'we,' 'mine,' 299 'myself,' 'us,' 'you,' 'yours,' 'yourself,' 'she,' 'my,' 'herself,' 'our' in addition to 'lol,' 'love,' and 'good.' See Figure S3a for 300 the correlations of these most frequent words with happiness across the three dictionaries, and Table S14 for its effect on 301 improving well-being predictions. Additional supplementary materials on OSF provide figures showing the word composition of 302 the dictionaries (weighted, where appropriate) in greater detail (38). 303

Mapping erroneous positive emotion words. We mapped the prevalence of the LIWC positive emotion words that correlated negatively with Happiness across the states of the US. In the absence of geographic confounds, the measurement errors would be uniformly distributed across the 50 states.

Context effects. As many words in the LIWC positive emotion dictionary also appear in other LIWC dictionaries, we used this overlap to study positive emotion words that also mark informal language, personal concerns, and social, perceptual, and biological processes. We again performed an ordinary least squares regression of the relative frequency of these sets of words against well-being, socioeconomic, and health variables.

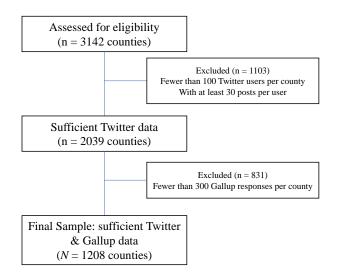
Error Analysis Supplemental Results. Results for LIWC are reported in the main paper. Here we provide supplemental analyses and results that further identify errors that can occur with word-level approaches.

Figure S4 presents the language confusion matrices for the LabMT dictionary, treating the LabMT words with a score higher 313 than 6 as positive words and words with a score less than 4 as negative wordsⁱⁱ. The words along the diagonal correlated 314 in the expected directions with county-level Happiness. Along the off-diagonal, the false LabMT positive words (top right) 315 mostly comprised words referencing the self ('me'), family members ('baby,' 'daddy,' 'mommy,' and 'aunt'), and religion ('bless, 316 and 'faithful'). The false LabMT negative words (bottom left) included language reflecting political discourse ('political,' and 317 'conservatives'), finances ('taxes,' 'bill,' and 'mortgage'), and work ('delayed,' and 'deadline') which are negatively valenced 318 when annotated at the word level but appeared to be used more frequently in the more affluent counties. As in the case of the 319 LIWC dictionary, modifying the LabMT dictionary to remove some of the most frequent yet erroneous words (see Figure S3a) 320 improved the county-level (see Table S3) and individual-level correlations with well-being items (see Table S13). 321

Race and cultural confounds affected the language-based predictions of well-being. Figure S3b shows how these confounds 'helped' the well-being prediction for common LIWC and LabMT true positive words; i.e., their usage along demographic and regional differences was mirrored in the differences in well-being. Figure S3c shows how these external biases can exacerbate the errors in frequently occurring LabMT positive emotion words; i.e., they were used differently by different communities, in ways which confound well-being measurements. For instance, in Figure S3c, we see that controlling for the percentage of African Americans in the population changed the association of 'lol' with well-being from r = -.11 (p <.001) to -.35 (p < .001).

328 Several other "true" LabMT negative words (Figure S4, bottom-right) (e.g., 'ni**a', 'ni**az', 'bi**hes') bore a racist or sexist connotation in general usage. However, within specific contexts, the words may have had different connotations. In 329 colloquial usage, they may have connoted a friendly, familiar, or inclusive reference (39) when talking to or about others. Swear 330 words (e.g., 'sh*t') may be used in a friendly manner to 'break the ice' in an informal conversation (40). Some appeared to 331 signal 'Black Twitter' (41) through the playful modification of verb spellings (e.g., 'f**kin") using practices common in African 332 American Vernacular English (42). Language differences appeared to reflect the socioeconomic and cultural differences that 333 also explicate the differences in region-level well-being. Even as internet language keeps changing, the differences in language 334 use can signal the persisting cultural and socioeconomic gaps in society. 335

In constructing dictionaries, annotators determine the connotation of words based on their most salient (not necessarily 336 most frequent) word sense. However, their annotations may not correspond to the contemporary contextual usage of words 337 or underlying psychological realities, in part because annotations inherently are impacted by the annotator's experiences 338 and perspective. For instance, annotators for LabMT denoted 'me' as a word with high positive valence, but studies have 339 found robust correlations between higher self-reference and poorer mental health, depression, and loneliness (43). Annotators 340 341 recruited through online platforms (e.g., in the case of LabMT) are likely to be young, educated residents of liberal, urban 342 areas in the US (44) which may explain why 'conservative' was annotated with a negative valence (LabMT, see Figure S4, 343 bottom-left).


The results and the error analysis suggest that there may be a subset of LIWC positive emotion words that are significantly negatively correlated with the well-being and health measures. Table S15 deconstructs the LIWC positive emotion dictionary into other concepts, by referring to LIWC's dictionaries that also contain the same positive emotion words. While words within the positive emotion dictionary overlap with 49 other dictionaries, here we present the most salient results as examples of the impact of contextual effects, presenting dictionaries that represent informal language, personal concerns, and language that captures processes including social, perceptual, and biological processes.

ⁱⁱWe followed the authors' operationalization in (7)

Additional variable tables

- Table S4 provides the sources of data and any transformations that were performed on them.
- Table S17 provides the inter-item correlations among the dependent variables at the county- and the individual-level.
- Table S18 provides the inter-item correlations among the Gallup outcomes at the county-level, for 2012-2013 and 2015-2016 (N = 373 counties).
- Table S19 provides the inter-correlations among the measurements of other LIWC dictionaries, which also contain words from the LIWC positive emotion dictionary.
- Table S20 provides the inter-correlations between Twitter's emotion and well-being measurements, calculated at the county-level.

Fig. S1. Participant flow at the US county level for inclusion in the study.

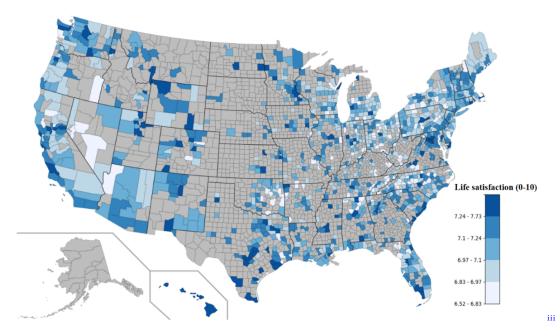
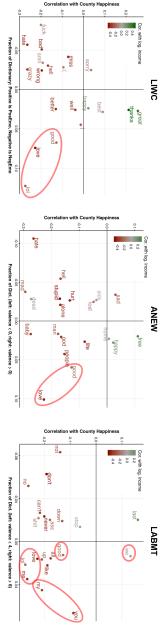



Fig. S2. Map of aggregated Gallup Life satisfaction scores for 1,208 US counties with at least 300 respondents.

correlate inversely with log median household income which were among the most frequent words and were inversely correlated with Gallup Happiness. The color of the points shows that they also vertical axis reflects correlation with county Gallup Happiness. Red circles indicate the words removed during the modification of the dictionaries, removed following (7)). For ANEW and LabMT, words were weighted by their valence weights, LIWC has no weights on words. Position on the (valence above and below the mean valence) and LabMT (valence > 6 as positive and < 4 as negative. Words with valence between 4 and 6 were (a) Shown are the 10 most frequent words per positive and per negative side of LIWC (Positive and Negative Emotion dictionaries), ANEW

								3	lost fre	equent	True	Positiv	e word	ls fron	LIW	Cand	Most frequent True Positive words from LIWC and LabMT	T							
N = 1208 counties		first	first (N = 14.2m)	4.2m)			fun	fun (N = 7.8m	.8m)			great (N = 16.9m)	(N = 1	6.9m)			thanks (N = 16.2m	(N = 1	l6.2m)			weekei	weekend (N = 6.5m)	= 6.5m)	
Gallup Items		Con	Controlling for:	for:			Con	Controlling for:	for:			Con	Controlling for:	for:			Con	Controlling for:	for:			Con	Controlling for:	for:	
		State	Age	Race	State Age Race SES	•	State	Age	Race	SES	State Age Race SES -	State Age Race SES -	Age	Race	SES		State Age Race SES	Age	Race	SES	•	State	State Age Race	Race	SES
Life Satisfaction	.14	.20	.13	.22	.00		8 .22 .	19	.31	.03	.23	.27	.27	.29	02	.28	.31 .03 .23 .27 .27 .2902 .28 .33 .29 .3205	.29	.32	05	.25	.31 .24	.24	.26	.08
Happiness	.28	.25	.33	.28	.21	.31	.26	.32 .34	.34	.24	.26	.24	.30	.24	.13	.21	.21	.26	.19	.03	.27	.26	.34	.26	.19
Worry	14	04	1721	21	09	1109		11	2007	07	0505	05	506	08	.04	02	06	05	04	.13	18	10	24	19	13
Sadness	28	19	29	32	17	27	23	27	34	15	22	19	24	22	.00	22	22	22	22	.07	29	25	-28 -19 -29 -32 -17 -27 -23 -27 -34 -15 -22 -19 -24 -22 00 -22 -22 -22 -22 -22 -22 -22 -22	29	16

(b) Correlations of the top 5 True Positive words (positive emotion words that correlate positively with Gallup Happiness), controlling for state and region, age, race, and socioeconomic covariates

								M	ost fre	quent	False]	Negati	ve wor	ds fro	m LIW	/C and	Most frequent False Negative words from LIWC and LabMT	Ę							
N = 1208 counties		good	good (N = 42.2 m)	2.2m)			like (like $(N = 74.7 m)$	ł.7m)			lol (lol (N = 76.7m)	.7m)			love (love (N = 46.4m)	.4m)			me (N	me (N = 129.8m)	1.8m)	
Gallup Items		Con	Controlling for:	for:			Con	Controlling for:	for:			Con	Controlling for:	for:			Con	Controlling for:	for:			Cont	Controlling for:	for:	
	•	State	Age	Race	State Age Race SES		State	State Age Race SES -	Race	SES		State	Age	Race	State Age Race SES -	•	State	Age	Race	State Age Race SES -		State Age Race	Age	Race	SES
Life Satisfaction	09091817 .02	09	18	17	.02	30	34	34	33	.00	11	17	18	35	.05	34	36	31	34	30343433 .0011171835 .0534363134032835323235	28	35	32		.04
Happiness	13	11	1119	09	06	19	19251701	25	17	01	27	26	35	38	19	23	27263538192320	26	262305	05	27	272835	35	25	12
Worry	.02	.01	.02	.06	02	.02	.04	.04	.03	12	.10	.06	.11	.29	.05	.15	.10	.21	.15	.05	.05	.04	.08	.08	07
Sadness	.11	.04	.16 .10	.10	.01	.21	.21	.23	.21	06	.25	.19	.30	.43	.12	.36	.29	.35	.36	.01 .21 .21 .23 .2106 .25 .19 .30 .43 .12 .36 .29 .35 .36 .12 .29	.29	.26 .33 .31	.33	_	.04

(c) Correlations of the top False Negative words (positive emotion words that correlate negatively with Gallup Happiness), controlling for state and region, age, race, and socioeconomic covariates

Fig. S4. LabMT Language confusion matrix, indicating potential sources of error

Words from the LabMT dictionary measuring positive (valence > 6) and negative valence (valence < 4)

are plotted in different quadrants, with the size of the word denoting the magnitude of its correlation with Gallup's Happiness item (p<0.01 after Benjamini-Hochberg correction). The shade of the word depicts its normalized frequency, with darker shades reflecting higher frequencies relative to other words. We refer to falsely correlating LabMT positive emotion words as false positives (top right) and to falsely correlating LabMT negative emotion words as false negatives (bottom left).

	Correlates Positively with Happiness	Correlates Negatively with Happiness	
LabMT Positive Emotion	first kind learning friday great exciting opportunity favorite endstory incredibly excited fun weekend ^{story} incredibly excited interesting olympics delicious technology wedding Super fantastic bike ^{creating}	like bed respect give loyal lol aunt love truth believeunderstandalways luv blessbabysleep faithful wishtrust	10-
LabMT Negative Emotion	avoid against taxes captured delayed OUCh shooting deadline homework billdangerous deadline homework billdangerous deadline homework billdangerous last billdangerous last creepy zero last tough nuclear costs	nothing fake dont hatingstarving bitch ughh tireu nobored killing haters hate cant arguing mad shitbrokelie can'tdead lying	10 ⁶ 0.34

Table S1. Descriptive statistics for Gallup and Twitter users across 1,208 US counties.

		Per Cour	nty			All 1208 Counties
Data	Median	Mean	SD	Minimum	Maximum	Total
Gallup respondents	692	1,429.8	2316.3	264	40,520	1,727,158
Twitter users	1004.5	4747.1	17,471.2	102	394,490	5,734,568
Tweets	190508	1,067,970.0	4,233,594.2	10,988	90,833,930	1,290,107,765

(a) Descriptive statistics for the number of respondents, Twitter users, and Tweets by county.

(b) Survey items included from the Gallup-Sharecare Well-Being Index, with the item description, scale, and mean scores across 1,208 counties.

Item Label	Description	Scale	Mean (SD)
Life satisfaction	Please imagine a ladder with steps numbered from	0-10	6.97 (0.17)
	zero at the bottom to ten at the top. The top of the		
	ladder represents the best possible life for you, and the		
	bottom of the ladder represents the worst possible life		
	for you. On which step of the ladder would you say you		
	personally feel you stand at this time?		
	Did you experience the following feelings during A LOT		
	OF THE DAY yesterday? How about -		
Happiness	Experienced happiness yesterday		0.89 (0.02)
Worry	Experienced worry yesterday	Yes/No	0.29 (0.03)
Sadness	Experienced sadness yesterday		0.17 (0.03)

Table S2. Twitter vs. Facebook language models, trained across the same sample of N = 522 qualtrics users. A comparison of the performance of a language model trained on Facebook vs. on Twitter language, which were used to derive county-level Twitter estimates of Life Satisfaction. Pearson's correlations with the Gallup well-being outcomes suggest that the difference between Facebook and Twitter is unlikely to have adversely affected the model performance of the Facebook-based WWBP Life Satisfaction model applied to county-level Twitter data in this study.

<i>N</i> = 1,208 U.S.	Person	-level (Train	ed on N = 522	users)
counties		Life Sat	isfaction	
	Trained on Facebook language	[95% CI]	Trained on Twitter language	[95% CI]
Life Satisfaction	.38	[0.33, 0.43]	.33	[.28, .38]
Happiness	.25	[0.2, 0.3]	.22	[.17, .27]
Worry	04	[-0.1, 0.01]	02	[08, .04]
Sadness	27	[0.17, 0.27]	25	[30,19]

Table S3. Detailed predictive performance (reported as Pearson correlation) of the different types of language models: (a) word-level methods, (b) sentence-level methods, (c) person-level and direct-prediction methods.

(a) Performance of word-level methods

													Word-level	I-level												
N = 1208 counties						LIWC 2015	2015							PER	FRMA			A	ANEW		Warriner	riner's		LabMT	MT	
Gallup Items	Positive	95% CI	Positive modified	[95% CI]	Negative	[95% CI]	Anger	[95% CI]	Anxiety	[95% CI]	Sadness	[95% CI]	Positive	[95% CI]	Negative	Negative 195% CII Anger 195% CII Anxiety 195% CII Sadness 195% CII Positive 195% CII Negative 195% CII Valence 195% CI	Valence	[95% CI]	Valence modified	[95% CI]	Valence 95% CI	-	Valence	[95% CI]	Valence modified	 95%
fe Satisfaction	21	[-0.27, -0.16]	- 06	[-0.11, 0]	32	[-0.37, -0.27	23	[-0.37, -0.27]23 [-0.28, -0.18]26 [-0.32, -0.21]35 [-0.4, -0.3]	26	[-0.32, -0.21]	35	[-0.4, -0.3]	.22	[0.16, 0.27]	37	[-0.42, -0.32]	03	[-0.09, 0.02]	.15	[0.1, 0.21]	.11	[0.05, 0.16]	27	[-0.32, -0.22]	.01	[-0.05, 0.07]
Happiness	13	[-0.18, -0.07]	.13	[0.07, 0.18]	27		27	[-0.32, -0.21]	07 [-0	[-0.12, -0.01]	07	[-0.12, -0.01]07 [-0.12, -0.01]	.27	[0.22, 0.32]	17	[-0.22, -0.11]	.04	[-0.02, 0.1]	.18	[0.12, 0.23]	.18	[0.13, 0.24]	07	[-0.13, -0.02]	.16	[0.1, 0.21]
orry	.11	[0.06, 0.17]	.01	[-0.05, 0.07]	.03	[-0.03, 0.09]	.02	[-0.03, 0.08]	.07	[0.01, 0.12]	.00	[-0.05, 0.06]	01	[-0.06, 0.05]	.02	[-0.04, 0.08]	.03	[-0.03, 0.09]	05	[-0.1, 0.01]	09	[-0.15, -0.04]	.02	[-0.04, 0.07]	04	[-0.09, 0.02]
Sadness	.25	[0.2, 0.3]	01	[-0.07, 0.04]	.22	[0.17, 0.28]	.17	[0.12, 0.23]	.16	[0.1, 0.21]	.18	[0.12, 0.23]	[0.1, 0.21] .18 [0.12, 0.23]19 [-	[-0.25, -0.14]	.18	[0.12, 0.23]	.09	[0.04, 0.15]	10	[-0.16, -0.04]	17	[-0.22, -0.11]	.19	[0.14, 0.25]	09	[-0.14, -0

ð
Performance
q
Performance of sentence-level
l methods

											Sente	Sentence-level										
N = 1208 counties Gallup Items							ī	NRC #Hashtag Emotion	ag Emotio	-							WWB	VWBP Affect		Swiss Chocolat	ocolate	
	Anticipation	[95% CI]	Joy	[95% CI]	Surprise	195% CI Joy 195% CI Surprise 195% CI Trust 195% CI Fear 195% CI Sadness 195% CI Anger 195% CI Disgust 195% CI	Trust	[95% CI]	Fear	[95% CI]	Sadness	[95% CI]	Anger	[95% CI]	Disgust	[95% CI]	Affect	[95% CI]	Positive	[95% CI]	Negative	[95% CI]
Life Satisfaction	.38	[0.33, 0.43]	.21	[0.15, 0.26]	.30	[0.24, 0.35]	16	[-0.21, -0.1]	I .30 [0	[0.25, 0.36]	11	[0.25, 0.36]11 [-0.16, -0.05]	29	[-0.35, -0.24]	19	[-0.24, -0.13]	.29	[0.24, 0.34]	.24	[0.19, 0.3]	29	[-0.34, -0.24]
Happiness	.23	[0.18, 0.28]	.21	[0.15, 0.26]	.24	[0.18, 0.29]	19 [-0	[-0.25, -0.14]	.25	[0.2, 0.3]	20	[-0.25, -0.14]	24	[-0.29, -0.19]	18	[-0.24, -0.13]	.23	[0.18, 0.29]	.24	[0.19, 0.29]	30	[-0.35, -0.25]
Worry	04	[-0.1, 0.01]	01	[-0.07, 0.04]	05	[-0.11, 0.01]	.02	[-0.04, 0.07]	06	06 [-0.12, -0.01]	.00	.00 [-0.06, 0.05]	01	[-0.07, 0.04]	05	[-0.1, 0.01]	.00	[-0.06, 0.06]	02	[-0.08, 0.03]	.11	[0.06, 0.17]
Sadness	29	[-0.34, -0.24]	13	[-0.18, -0.07]	32	[-0.34, -0.24]13 [-0.18, -0.07]32 [-0.37, -0.27] .25 [.25	[0.2, 0.31]	29	[-0.34, -0.24]	.20	[0.2, 0.31]29 [-0.34, -0.24] .20 [0.14, 0.25] .19	.19	[0.13, 0.24]	.12	[0.06, 0.17]	- 18	[-0.23, -0.12]	20	[-0.25, -0.14]	.33	[0.27, 0.37]

(c) Performance of person-level and direct-prediction methods

	Person-level	-level				Direct prediction	ediction			
N = 1208 counties Gallup Items	WWBP Life Satisfaction	[95% CI]	SES	[95% CI]	[95% CI] All LIWC dictionaries	[95% CI]	I] All language	[95% CI] language + SES	All language + SES	[95% CI]
Life Satisfaction	.39	[0.34, 0.44]	.59	[.55, .62]	.55	[.51, .59]	.62	[.58, .66]	.65	[.61, .69]
Happiness	.23	[0.17, 0.28]	.35	[.29, .39]	.48	[.43, .53]	.51	[.47, .54]	.52	[.48, .56]
Worry	03	[-0.09, 0.02]	21	[26,15]	.46	[.41, .51]	.52	[.48, .56]	.53	[.49, .57]
Sadness	23	[-0.28, -0.18]50 [54,46]	50	[54,46]	.58	[.54, .62]	.64	[.60, .68]	.65	[.61, .69]

a. LIWC is Linguistic Inquiry & Word Count: Positive and Negative emotion, Anger, Anxiety, Sadness

ANEW is Affective Norms of English Words: Valence scores

b. NRC Hashtag Emotion: Anticipation, Joy, Surprise, Fear, Sadness, Anger and Disgust scores WWBP Affect: Affect Swiss Chocolate: Positive, Negative scores

All-cause mortality	Mentally unhealthy days	% Fair/poor health	Socioeconomic index		% with Bachelor's degree	Household income	Income	% Rural	% Hispanic	% African American	% Over 65	% Under 18	% Female	Included variable	
			standardized and then averaged	Independently		log-transformed	log-transformed							Transformation	Variable
	Health		Education	Income	Education	IIICOIIIE	Taboardo			Demographic				Categories	
	Adults (age 18+) reporting mentally unhealthy days	Adults (age 18+) reporting fair or poor health	Attainment of bachelor's degree or higher	Log-transformed per-capita income	Percent population who attained a Bachelor's degree or higher	Median household income	Median per capita income	Percentage of the county which is considered rural	Percent Hispanic population	Percent African American population	Percent population over 65 years	Percent population under 18 years	Percent female population	резстрион от уаттарис	Description of variable
per 100,000 population		% of population	population	% of	% of population	2010 inflation- adjusted US dollars	2010 inflation- adjusted US dollars		1 1	population	% of			CIII	Tnit
2009- 2016						2010- 2015								covered	Years
CDC Wonder, Underlying Cause of Death (CDC, 2016) (8)	Factor Surveillance System (BRFSS) data (2009-2010) (6), obtained through 2013 County Health Rankings (CHR; 2015) (7)	County-level estimates based on CDC's Behavioral Risk					American Community Survey (ACS, 2015) 5-Year Estimates (5)							Source	Conve

	N = 1208 counties	Gallup Items Positive Positive	SES Index40 -0.4:	% Fair/poor health .37 [0.37	All cause mortality .26 [0.2]	
		% CIJ Po	-0.45, -0.35]08 [-0.14, -0.03]48	[0.32, 0.42] -	[0.21, 0.31] -	4, 0.25]
	LIWC	sitive dified	.08 [-(03 [-	14 [-	-01 [-
	č	95% CI]).14, -0.03]	[-0.09, 0.03]	[-0.2, -0.09]	0.05, 0.07]
		Negative		.35	.42	.17
(a) I		[95% CI]	[-0.53, -0.44]	[0.3, 0.4]	[0.37, 0.47]	[0.12, 0.23]
^o erforma		Positive	.39	34	38	14
(a) Performance of word-level methods Word-level	PEI	[95% CI]	[0.34, 0.43]	[-0.39, -0.29]	[-0.43, -0.33]	[-0.2, -0.09]
word-leve Wo	Woi PERMA	Negative	43	.19	.35	.16
el metho d-level	Word-level	[95% CI]	[0.34, 0.43]43 [-0.47, -0.38]	[0.14, 0.25]	[0.3, 0.4]	[0.1, 0.21]
ds		Valence	12	.11	.12	Mentally unhealthy days <u>19 [0.14, 0.25] .01 [-0.05, 0.07] .17 [0.12, 0.23]14 [-0.2, -0.09] .16 [0.1, 0.21] .11 [0.05, 0.16]04 [-0.09, 0.02] .18 [0.13, 0.24]04 [-0.09, 0.02] (b) Performance of data-driven methods</u>
	ANEW	[95% CI]	-0.18, -0.07]	[0.05, 0.17]	[0.07, 0.18]	[0.05, 0.16]
		Valence modified	.18	13	14	days .19 [0.14, 0.25] .01 [-0.05, 0.07] .17 [0.12, 0.23] 14 [-0.2, 0.09] .16 [0.1, 0.21] .11 [0.05, 0.16] 04 [-0.09, 0.02] .18 [0.13, 0.24] 04 (b) Performance of data-driven methods
		[95% CI]	[0.12, 0.23]	[-0.19, -0.08]	[-0.2, -0.09]	
		Valence	43	.25	.32	
	Lab	[95% CI] Valence [95% CI] Valence [95% CI]	[-0.48, -0.38] .07	[0.19, 0.3]	[0.27, 0.37]	[0.13, 0.24]
	LabMT	Valence modified	.07	19	17	
		[95% CI]	[0.02, 0.13]	-0.24, -0.13	-0.22, -0.11	[-0.09, 0.02]

			Sente	Sentence-level			Person-level	-level	Direct prediction	-ediction
N = 1208 counties Gallun Ifems	w	WWBP		Swiss Chocolate	hocolate		WWBP Life	1050/ CTI	AII	1050/ CTI
current second	Affect	Affect [95% CI] Positive	Positive	[95% CI] Negative [95% CI]	Negative	[95% CI]	Satisfaction	[2370 CI]	language	[7370 CJ
SES Index	.39	[0.34, 0.44]	.40	[0.35, 0.45]	53	[-0.57, -0.49]	.54	[0.5, 0.58]	.85	[.80, .90]
% Fair/poor health	26	[-0.31, -0.21]	33	[-0.38, -0.28]	.52	[0.47, 0.56]	32	[-0.37, -0.27]	.75	[.73, .77]
All cause mortality	38	[-0.43, -0.34]	45	[-0.5, -0.41]	.51	[0.46, 0.55]	39	[-0.44, -0.35]	.82	[.80, .84]
Mentally unhealthy days	14	[-0.19, -0.08]	15	[-0.2, -0.09]	.25	[0.19, 0.3]	21	[-0.26, -0.15]	.51	[.46, .56]

Table S6. Summary of the potential sample biases caused by the absence of some counties in our dataset. Negative Pearson correlations indicate that counties with a given demographic feature are more likely to be missing in the datasets.

	Correla	tion with i	nclusion
	Gallup	Twitter	Current dataset
	1,228 counties	2,039 counties	1,208 counties
% Population under 18	.01	.08	.02
% Population over 65	30	36	29
% African-American	.02	.14	.02
% Hispanic	06	13	06
% Male	20	22	20
% Rural	61	60	61
% Bachelor's degree	.39	.20	.38
Per capita income	.32	.20	.31

This Table shows the sample biases of the Gallup, Twitter and combined datasets as correlations against an dummy variable marking inclusion. Rural counties are especially underrepresented.

Table S7. Performance of user level models used to predict the sociodemographic labels for county-level tweets

		Ν	Test Accuracy
Age	$\mathbf{Constal} = 0014 (10)$	75.004	.83 (Pearson r)
Gender	Sap et al. 2014 (19)	75,394	.92 (Accuracy)
Income	Matz et al. 2019 (37)	2,623	.41 (Pearson r)
Education	Giorgi et al. 2019 (26)	4,062	.62 / .53 (Accuracy / F1)

		(;	a) Avera	ge county b	in percen	tages from the	Census, Gallup and p	ost-stratified	Gallup.		
		Age		Geno	der		Income		Ec	lucation	
	18-39	40-54	55+	Female	Male	\$0-\$34,999	\$35.000-\$74.999	\$75.000+	High School	Some	Bach.
									equiv. or lower	college	Degree +
Census	34.5	27.2	38.3	50.6	49.4	35.3	32.9	31.8	44.0	30.6	25.4
Gallup	22.4	25.1	52.5	49.6	50.4	37.7	24.1	38.2	28.8	32.6	38.6
Post-stratified											
Gallup	34.5	27.2	38.3	50.6	49.4	35.3	32.9	31.8	44.0	30.6	25.4

Table S8. Dataset statistics pre- and post-stratification as compared to the census demographic distribution.

	Geno	ler	Educ	ation
	Female	Male	Less than Bach. Degree	Bach. Degree or higher
Census	50.6	49.4	74.6	25.4
Twitter	52.2	47.8	58.2	41.8
Post-stratified Twitter	50.6	49.4	74.6	25.4

(b) Average county bin percentages from the Census, Twitter and post-stratified Twitter.

									Wo	Word-level								
N = 1208 counties			F	LIWC				PERMA	IMA			ANEW	W			LabMT	MT	
Gallup Items	Positive	[95% CI]	Positive modified	[95% CI]	Negative	[95% CI]	Positive	Positive [95% CI] Positive [95% CI] Negative [95% CI] Positive [95% CI] Negative [95% CI] Valence [95% CI] Valence [95% CI] Positive [95%	Negative	[95% CI]	Valence		Valence modified	[95% CI]	Valence	CII Valence 195% CII Valence 195% CII Valence modified	Valence modified	[95% CI]
Life Satisfaction	24	[-0.29, -0.18]02	02	[-0.07, 0.04] 33 [-0.38, -0.28] .26	33	[-0.38, -0.28]	.26	[0.21, 0.31]	28	28 [-0.33, -0.23]	09	[-0.15, -0.04]	.08	[0.02, 0.14]	29	[0.02, 0.14]29 [-0.34, -0.24]	.02	[-0.04, 0.08]
Happiness	13	[-0.18, -0.07] .15	.15	[0.1, 0.21]	30	[-0.35, -0.25]	.31	30 [-0.35, -0.25] .31 [0.26, 0.36]	14	[-0.19, -0.08]	02	[-0.08, 0.03]	.11	[0.06, 0.17]	12	12 [-0.18, -0.07]	.13	[0.08, 0.19]
Worry	.16	[0.1, 0.21] .05	.05	[-0.01, 0.11]	.06	[0, 0.12]	02	[-0.08, 0.03]	.03	[-0.03, 0.09]	.09	[0.03, 0.14]	.00	[-0.06, 0.05]	.12	[0.07, 0.18]	.03	[-0.03, 0.08]
Sadness	.25	[0.2, 0.31]	04	[-0.09, 0.02]	.28	[0.23, 0.33]	25	.25 [0.2, 0.31]04 [-0.09, 0.02] .28 [0.23, 0.33]25 [-0.3, -0.2] .17 [0.11, 0.22] .11 [0.05,	.17	[0.11, 0.22]	.11	[0.05, 0.16]		[-0.12, -0.01]	.23	07 [-0.12, -0.01] .23 [0.17, 0.28] 09 [-0.14, -0.03]	09	[-0.14, -0.03]

(a) Performance of word-level methods

Table S9. Summary of the best performing language models after the post-stratification of Twitter and Gallup data. The results are similar to those obtained before age, gender, income, and education post-stratification.

(b) Performance of data-driven methods

			Sente	Sentence-level			Person-level	level	Direct p	Direct prediction
N = 1208 counties Gallun Items	W	WWBP		Swiss C	Swiss Chocolate		WWBP Life	1050/ CT	All	050/ 01
Sumb rooms	Affect	[95% CI] Positive	Positive	[95% CI] Negative [95% CI]	Negative	[95% CI]	Satisfaction	IT week	language	93% CI
Life Satisfaction	.22	[0.17, 0.27]	.26	[0.21, 0.31]	44	[-0.48, -0.39]	.40	[0.35, 0.44]	.59	[.55, .63]
Happiness	.12	[0.07, 0.18]	.28	[0.22, 0.33]	39	[-0.44, -0.34]	.25	[0.2, 0.3]	.49	[.46, .52]
Worry	.00	[-0.06, 0.06]	04	[-0.1, 0.01]	.17	[0.22, 0.11]	08	-0.14, -0.02	.46	[.42, .50]
Sadness	12	[-0.18, -0.07]	25	[-0.31, -0.2]	.43	[0.47, 0.38]	27	-0.32, -0.22]	.61	[.57, .64]

Gallup Items Life Satisfaction Happiness	Gallup Items Life Satisfaction	Gallup Items	Gallup Items		N = 1208 counties			Sadness	Worry	Happiness	Life Satisfaction		Ganup rusins	N = 1208 counties	1	-		Sadness		Happiness	Life Satisfaction -			N = 1208 counties Gallup Items				Sadness	Worry	Happiness	Life Satisfaction			N = 1208 counties Gallup Items			
.39 .23	.39		•		4			18	.00	.23	.29		1					19		07	27		- Reg	Cta				.25	.11	13	21		1				
.23	• • •	40	State + Region	Co	VWBP	Pe		21	03	.23	.31		State + Region	Con	WW			15 .16		0607	.252	Valence	Region Age	Controlling for:				.18	.05	13	26		Region	Coni State +			
.26		.39	Age	Controlling for:	WWBP Life Satisfaction	Person-level		17	.00	.25	.29	Affect	Age	Controlling for:	WWBP Affect			6 .20		.0808	2327	nce	ge Race	ing for:				.26	.16	18	22	Positive	Age	Controlling for: `e +			
.22		.39	Race	for:	tisfact	evel		18	02	.21	.35		Race	or:	ect			03		8 .09	703		e SES		Ľ			.25	.11	13	21		Race	or:			
.05		.11	SES		ion			.02	.10	.11	.08		SES					09	-	.16	.01				LabMT			.06	.04	.01	.02		SES				
								19	02	.24	.24		1					05	-	.14	.03	Vale	Region	Co Co				01	.01	.13	06						
								19	03	.23	.28		State + Region	Cor		Sent		13	03	.21	.07	Valence modified	i Age	Controlling for:				01	02	.10	06	Posit	Region	Con State +	LIV		
								23	03	.29	.29	Positive	Age	Controlling for:		Sentence-level	(0	07	06	.13	.04	dified	Race	for:			(b) Pa	06	.03	.14	.00	Positive modified	Age	Controlling for: 'e +	LIWC 2015		
							d) Partia	21	06	.23	.34	e	Race		5	evel) Partial	05	02	.13	03		SES			Word-level	rtial cor	.03	03	.08	02	ified	Race	for:	57		(a) Part
							al correl:	.00	.07	.12	.01		SES		wiss C		correlat	.09		.04	03		- 31	ç		vel	relations	05	01	.16	01		SES				ial corre
							(d) Partial correlations with person-level methods	:33	.11	30	29				Swiss Chocolate		(c) Partial correlations with sentence-level methods	.02		.07	03	Val	Region ,	Contro			(b) Partial correlations with word-level methods (continued)	.22	.03	27	32						(a) Partial correlations with word-level methods
							ith perso	.28	.07	31	37	7	State + Region		e		h senter	.05 .1		.05 .0	.0003	Valence	Age Race	Controlling for:			ord-leve	.22	.03	25	34	7	Region	Coni State +		Woi	vith wor
							on-level	.38	.16	42	36	Negative	ı Age	Controlling for:			nce-leve	.10 .03	-	.03 .08	03 .04		ice SES		Α		l metho	.23	.05	31	33	Negative	Age	Controlling for: te +		Word-level	d-level r
							method	.37	.17	31	40	e	Race	for:			el metho	10		.18	.15		-		ANEW		ds (cont	.23	.05	25	38		Race	for:			nethods
							S	.08	.00	17	.03		SES				ds	13	-	.18	.16	Vale	Region	Cor Cor			inued)	02	09	13	05		SES				
																	-	12	-	.20	.17	Valence modified	State + Region Age Race	Controlling for:					01	.27	.22			~			
																		09		.16	.16	lified		for:				19	02	.26	.28	Р	Region Age	Contr State +			
																		01	01	.12	.05		SES					21	01	.31	.24	Positive		Controlling for: 'e +			
																												22		.28	.35		Race	r:			
																												.00 .	.08 .	.16 -	01 -		SES		PERMA		
																												.18	.02	17 -	37 -		- R	St.	A		
																												.19	.03	16 -	36 -	Neg	Region	Contro State +			
																												.16 .	.03	18	35	Negative	Age R	Controllingfor: 'e +			
																												.19	.01	19	ပ်		Race	• :			

-.04

-.19

-.03

.01 .19

-.08

-.37

-.15

Race

SES

Table S10. Summary of the best performing language models as partial correlations controlling for the effect of region and state, age, race, and socioeconomic differences. The first column in each block provides Pearson's r with no controls.

Ъ
Ē
uble S11
≓.
ŝ
E.
ŝ
ž
으
5
ere
ep
ica
tio
ž
sut
inalyse
y of the replication analyses (N = 3)
ŝ
П
37
ω c
2
nti
(sa
•

(a) The main results from Table 2: Pearson correlations of the Twitter language from 2009-2015 and the Gallup-Sharecare well-being estimates, N = 1,208 US counties

)9 - 2015					Word-level					Se	Sentence-leve	ēl	Person-level	prediction
N = 1208 counties		LIWC		PE	PERMA	NV	ANEW	Lab	LabMT	WWBP	Swiss Chocolat	nocolate	WWDD I :6	114
llup Items	Positive	Positive (modified)	Negative	Positive	Negative	Valence	Valence (modified)	Valence	Valence (modified)	Affect	Positive	ositive Negative	Satisfaction	language
fe Satisfaction	21	06	32	.22	37	03	.15	27	.01	.29	.24	29	.39	.62
appiness	13	.13	27	.27	17	.04	.18	07	.16	.23	.24	30	.23	.51
oriy	.11	.01	.03	01	.02	.03	05	.02	04	.00	02	.11	03	.52
dness	.25	01	.22	19	.18	60	10	.19	09	18	20	.33	23	.64

counties with sufficient language and Gallup responses (> 200) for 2012-2013 and 2015-2016. (b) Subset of the main results: Pearson correlations of the Twitter language from 2009-2015 and the Gallup-Sharecare well-being estimates, N = a subset of 373 US

2009 - 2015					Word-level					Se	Sentence-leve	vel	Person-level	Direct
N = 373 counties		LIWC		PE	PERMA	A٨	ANEW	Lab	LabMT	WWBP	Swiss Chocolate	hocolate	WWDD I #2	2
Gallup Items	Positive	Positive (modified)	Negative	Positive	Negative	Valence	Valence (modified)	Valence	Valence (modified)	Affect	Positive	e Negative	Satisfaction	language
Life Satisfaction	17	.02	38	.28	39	.01	.13	24	.00	.32	.31	33	.43	.64
Happiness	.01	.34	36	.44	18	.31	.39	.12	.32	.36	.29	32	.28	.72
Worry	.01	05	.07	12	.06	24	27	20	20	04	.00	.08	07	.64
Sadness	.16	08	.26	30	.16	11	25	.01	20	19	17	.31	28	89.

(c) Replication analysis 2012-2013: Pearson correlations of the Twitter language and the Gallup-Sharecare well-being estimates on N = the same 373 US counties as in (b)

2012 - 2013					Word-level					s	Sentence-level	vel	Person-level	Direct
N = 373 counties		LIWC		Н	PERMA	٨N	ANEW	Lab	LabMT	WWBP	Swiss Chocolate	nocolate	WWDD I :fa	
Gallup Items	Positive	Positive (modified)	Negative	Positive	Negative	Valence	Valence (modified)	Valence	Valence (modified)	Affect	Positive	Positive Negative	Satisfaction	language
Life Satisfaction	16	07	36	.23	29	04	.02	23	-11	.31	.32	07	.36	.47
Happiness	.10	.29	26	.33	15	.12	.19	.09	.20	.35	.24	02	.15	.60
Worry	-11	12	.02	06	.03	14	16	16	16	06	01	06	.03	.38
Sadness	.03	05	.18	23	.10	- 11	17	04	- 1 5	- 15	- 14	- 03	20	.51

(d) Replication analysis 2015-2016: Pearson correlations of the Twitter language and the Gallup-Sharecare well-being estimates on N = the same 373 US counties as in (b), and (c).

2015 - 2016					Word-level					s	Sentence-leve	/el	Person-level	Direct
N = 373 counties		LIWC		PE	PERMA	AN	ANEW	LabMT	MT	WWBP	Swiss Chocolate		WWDD I :fa	1
Gallup Items	Positive	Positive (modified)	Negative	Positive	Negative	Valence	Valence (modified)	Valence	Valence (modified)	Affect	Positive	Negative	Satisfaction	language
Life Satisfaction	08	.08	32	.22	18	10	03	-,11	14	.35	.31	27	.39	.54
Happiness	.03	.17	32	.24	10	.03	.12	03	07	.33	.30	17	.28	.44
Worry	.08	.06	.10	02	.03	07	13	.04	.05	09	06	01	14	.46
Sadness	.09	05	.27	15	.07	.06	04	.12	.06	24	23	.24	29	.30

(e) Robustness analysis to compare predictive performances of language models trained on the Twitter language of 2012-2013 and 2015-2016 respectively. The test set comprised the language for N = 373 counties in 2015-2016. We see that the predictive performance of 2012-2013 language models performed close to those trained on the same year, suggesting that our language analyses are robust over time.

Language n Twitter (2	odels from 012- 2013)	Languag fr Twitter (2	Language models from Twitter (2015- 2016)
Direct prediction	[95% CI]	Cross- validated	[95% CI]
.47	[.37, .53]	.54	[.46, .62]
.43	[.33, .49]	.44	[.35, .51]
.42	[.29, .46]	.46	[.38, .54]
.29	[.27, .55]	.30	[.28, .46]
	Language m Twitter (2) Direct prediction .47 .43 .42 .29		

Table S12. Summary statistics about the Qualtrics dataset of individual Facebook users (N = 2,321), reported as demographic information about the survey respondents and scales used to measure subjective well-being.

(a) Sta	tistics for the Qualtri	cs dataset.
N	Mean Age (SD)	% Female
2,321	38.5 (18.6)	61.6%

(b) Survey items and descriptive statistics for the dependent variables in the Qualtrics dataset.

Item Label	Facebo	ok users (N = 2321)
	Scale	Mean (SD)
Life satisfaction	0-10	6.04 (2.22)
Happiness		6.17 (2.76)
Worry	0-10	4.49 (3.04)
Sadness		3.40 (3.13)

			Sadness	Worry	Happiness	Life Satisfaction	(N = 2321)	Facebook users	
			.04	.07	.04	.04	Positive		
			[0, 0.08]	[0.03, 0.11]	[0, 0.08]	[0, 0.08]	[95% CI]		
(14	Faceb		.01	.05	.06	.07	Positive modified		
	facebook users		[-0.03, 0.05]	[0.01, 0.09]	[0.02, 0.1]	[0.03, 0.11]	Positive 195% CI1 Positive 195% CI1 Negative 195% CI1 Positive 195% CI1 Negative 195% CI1 Valence	LIWC	
Affect			.15	.13	21	26	Negative		
195%	WWBP		[0.11, 0.19]	[0.09, 0.17]	[-0.25, -0.17]	[-0.29, -0.22]	[95% CI]		
CI] P			04	.00	.11	.14	Positive		
ositive [Sentence-level	[-0.08, 0]	[-0.04, 0.04]	[0.07, 0.15]	[0.1, 0.18]	[95% CI]	PI	
95% CI]	Swiss C	e-level	.14	.15	18	21	Negative	PERMA	Woi
Affect [95% CI] Positive [95% CI] Negative [95% CI]	Swiss Chocolate		[0.1, 0.18]	[0.11, 0.19]	[-0.22, -0.14]	[-0.25, -0.17]	[95% CI]	ł	Word-level
[95% C			.01	.03	.08	.09	Valence		
			[-0.03, 0.05]	[-0.01, 0.07]	[0.04, 0.12]	[0.05, 0.13]	[95% CI]	Ai	
language	All	Direct prediction]02	.00	.09	.12		ANEW	
22.20 CT		diction	[-0.06, 0.02]	[-0.04, 0.04]	[0.05, 0.13]	[0.08, 0.16]	Valence 195% CI Valence 195% CI Valence 195% CI	-	
			.07	.08	.00	02	Valence		
			[0.02, 0.11]	[0.04, 0.12]	[-0.04, 0.04]	[-0.06, 0.02]	[95% CI]	La	
			.03	.05	.00	.00	Valence modified	LabMT	
			[-0.01, 0.07]	[0.01, 0.09]	[-0.04, 0.05]	[-0.04, 0.04]	[95% CI]		

			Sente	Sentence-level			Direct prediction	ediction
facebook users	W	WWBP		Swiss C	Swiss Chocolate		All	10.50% CTI
(11 - 2021)	Affect	[95% CI]	Positive	[95% CI] Positive [95% CI] Negative [95% CI]	Negative	[95% CI]	language	[1] 0/ ck
Life Satisfaction	.22	[0.19, 0.26]	.21	[0.17, 0.25]	12	[-0.16, -0.08]	.26	[.22, .30]
Happiness	.20	[0.16, 0.24]	.15	[0.11, 0.19]	07	[-0.11, -0.03]	.15	[.11, .19]
Worry	07	[-0.11, -0.03]	08	[-0.12, -0.04]	.07	[0.03, 0.12]	.17	[.15, .19]
	10		10	10	00		1	

Kokil Jaidka, Salvatore Giorgi, H. Andrew Schwartz, Margaret L. Kern, Lyle Ungar and Johannes C. Eichstaedt 25 of 34

		Pos	t-modific	cation resu	ılts	
N = 1208 counties Gallup Items	LI	WC	AN	EW	La	оМТ
F	Positive	Positive modified	Valence	Valence modified	Valence	Valence modified
Life Satisfaction	21	06	03	.15	27	.01
Happiness	13	.13	.04	.18	07	.16
Worry	.11	.01	.03	05	.02	04
Sadness	.25	01	.09	10	.19	09
Socioeconomic index	40	08	12	.18	43	.07
% Fair/poor health	.37	03	.11	13	.25	19
All cause mortality	.26	14	.12	14	.32	17
Mentally unhealthy days	.19	.01	.11	04	.18	04

Table S14. Impact of removing the frequent, erroneous words driving LIWC and LabMT correlations.

LIWC 2015	Inf	Informal Language	age		Personal Concerns	Concerns				
dictionaries	Swear	Assent	Netspeak	Religion	Leisure	Work	Money	Social	Perceptual	Biological
Most frequent positive emotion words	lmao*, lmfao*	ok, cool, awesome, okay, yay*	lol, :), haha*, lmao*, lmfao*	bless*, faith*, heaven*, worship*, paradise*	play, fun, party*, playing, joke*	champ*, award*, success, challeng*, credit*	free, credit*, rich, charit*, profit*	love, party*, welcom*, trust*, giving*	_	love, sweet, sexy, loved, loves
Life Satisfaction	04	04	13	11	.15	.33	.23	32	02	32
Happiness	27	01	25	12	.15	.23	.12	17	.14	20
Worry	.12	02	.10	.08	04	05	02	.12	03	.14
Sadness	.14	.02	.23	.27	21	30	17	.32	02	.34
Socioeconomic index	05	09	33	33	.26	.57	.40	50	06	53
% Fair/poor health	.21	.09	.42	.43	25	44	27	.37	06	.40
All cause mortality	.11	.07	.30	.49	22	48	41	.38	14	.40
Mentally unhealthy days	.07	.06	.15	.24	13	23	15	.25	.01	.27
Words in positive emotion dictionary	2	6	18	6	24	17	14	59	30	25
Fraction of positive emotion word occurrences (tokens)	3.70%	5.38%	26.58%	1.06%	6.57%	1.71%	2.32%	14.15%	4.42%	9.67%

Table S15. Ov
Ñ
ы
ş
erla
apo
ofL
ip of LIWC
Ő
201
ы С
ositi
itive
e e
emo
tion
n wo
õ
sp
with
<u>ь</u>
2015 positive emotion words with other LIWC dictionarie
Ę
Š
ġ
ctio
onai
ŝ

Word-level annotations	Method (source) LIWC 2015 (2)	features (words) 1,364	Categories Positive Emotion, Negative Emotion,	
ons	LIWC 2015 (2)	1,364	Positive Emotion, Negative Emotion, Anxiety, Anger, Sadness	Developed by psychologi guistic concepts elicited
	PERMA dictionary (3, 4)	402	Positive Emotion, Negative Emotion	Developed by psychologists based on Seligman's the- ory of well-being. Version 2: manually defined.
	ANEW (5)	1,034	Valence	Annotation experiments Likert scale
	Warriner's extended ANEW (6)	13,905	Valence	Annotation experiments Likert scale
	LabMT (7)	10,218	Valence	Annotation experiments for words, based on a 1-9 scale for valence. Following (7), after removing words with 4 < valence < 6, a total of 3,731 words remain in our analyses.
Sentence-level annotations	WWBP Affect (12)	7,265	Affect	Standardized regression ferred from supervised trained on labeled Twitter
	Swiss Chocolate (9)	7,168	Positive, Neutral, and Negative Emo- tion	Standardized regression coefficier ferred from supervised machine trained on hashtagged Twitter posts
	NRC Hashtag Emotion (8)	16,862	Anticipation, Joy, Surprise, Trust, Fear, Sadness, Anger, Disgust	Standardized regression coefficier ferred from supervised machine trained on hashtagged Twitter posts
Person-level models	Life Satisfaction (This study)	2,000 LDA topics	Cantril Ladder	Standardized regression coefficients inferred from su- pervised machine learning models trained on the so- cial media posts of 2,143 survey respondents
Direct prediction	All LIWC dictionaries (2)	6,549	Emotion concepts, cognitive pro- cesses, personal concerns and other dictionaries of psycholinguistic relevance.	Standardized regression coefficients for LIWC cate- gories, inferred from supervised machine learning models that are trained on the county's relative usage of LIWC categories when its well-being measurement is known
	County Life Satisfaction (This study)	2,000 LDA topics	Cantril Ladder	Standardized regression pervised machine learnii cial media posts of 1208

Table S16. The complete set of language-based emotion measures used in this study, including the ones reported on in Table 2 and Table S3. The number of features differs slightly from their intended sizes since we did not include multi-word phrases in the LIWC dictionaries and part-of-speech tags in the Swiss Chocolate model.

Table S17. Inter-item correlations for the county-level and individual-level outcomes and controls.

N = 1208 counties	Life Satisfaction	Happiness	Worry	Sadness	%Population under 18 yrs	% Population over 65 yrs	Median age	%Population African American	Socioeconomic index	% Fair/poor health	All cause mortality	Mentally unhealthy days
Life Satisfaction	1.00	.55	41	55	.05	20	24	.08	.59	42	51	44
Happiness	.55	1.00	51	62	.09	09	12	13	.35	45	40	39
Worry	41	51	1.00	.68	.00	06	04	05	21	.38	.29	.38
Sadness	55	62	.68	1.00	05	.17	.15	.06	50	.61	.52	.49
% Population under 18 yrs	.05	.09	.00	05	1.00	59	49	.11	09	.12	.10	09
% Population over 65 yrs	20	09	06	.17	59	1.00	.89	24	22	.10	.07	.19
Median age	24	12	04	.15	49	.89	1.00	25	06	.01	.02	.15
% Population African	.08	13	05	.06	.11	24	25	1.00	06	.20	.30	.01
Socioeconomic index	.59	.35	21	50	09	22	06	06	1.00	65	70	44
% Fair/poor health	42	45	.38	.61	.12	.10	.01	.20	65	1.00	.64	.59
All cause mortality	51	40	.29	.52	.10	.07	.02	.30	70	.64	1.00	.49
Mentally unhealthy days	44	39	.38	.49	09	.19	.15	.01	44	.59	.49	1.00

(a) Inter-item correlations for the well-being and health measurements at the county-level.

(b) Inter-item correlations for the well-being measurements and individual-level.

N = 2321 Facebook users	Life Satisfaction	Happiness	Worry	Sadness
Life Satisfaction	1.00	.66	42	46
Happiness	.66	1.00	47	58
Worry	42	47	1.00	.67
Sadness	46	58	.67	1.00

			2012 - 20	13			2015 - 2	016	
	N = 1208 counties	Life Satisfaction	Happiness	Worry	Sadness	Life Satisfaction	Happiness	Worry	Sadness
	Life Satisfaction	1.00	.43	39	48	.65	.36	18	30
Gallup outcomes	Happiness	.43	1.00	45	53	.46	.51	31	36
2012 - 2013	Worry	39	45	1.00	.62	33	29	.50	50 .32
	Sadness	48	53 .62 1.00	1.00	46	41	.40	.46	
	Life Satisfaction	.65	.46	33	46	1.00	.59	40	50
Gallup outcomes	Happiness	.36	.51	29	41	.59	1.00	35	52
2015 - 2016	Worry	18	31	.50	.40	40	35	1.00	.65
	Sadness	30	36	.32	.46	50	52	.65	1.00

Table S18. Inter-item correlations among the Gallup well-being outcomes for 2012-2013 and 2015-2016, for n = 373 counties.

		Infor	mal lang	uage		Personal	concerns	6				
	LIWC 2015 dictionaries	Swear words	Assent	Netspeak	Religion	Leisure	Work	Money	Social processes	Perceptual processes	Biological processes	
	Swear words	1.00	.18	.83	.21	55	49	30	.29	.13	.70	
Informal language	Assent	.18	1.00	.50	.15	65	67	75	.79	36	.16	
rl e	Netspeak	.83	.50	1.00	.38	75	67	52	.46	14	.43	
su	Religion	.21	.15	.38	1.00	39	28	23	.25	08	08	
concer	Leisure	55	65	75	39	1.00	.76	.66	69	.21	38	
Personal concerns	Work	49	67	67	28	.76	1.00	.76	75	01	48	
Pei	Money	30	75	52	23	.66	.76	1.00	72	.19	34	
	Social processes	.29	.79	.46	.25	69	75	72	1.00	.03	.48	
	Perceptual processes	.13	36	14	08	.21	01	.19	.03	1.00	.45	
	Biological processes	.70	.16	.43	08	38	48	34	.48	.45	1.00	

Table S19. Inter-item correlations for other LIWC dictionaries which contain positive emotion words.

Person- level models	Sentence-level approaches											W	ord	-lev	vel	apı	oro	acł	ies								
WWBP Life Satisfaction	NRC Hashtag Emotion Swiss Chocolate WWBP lexicon							LabMT	LabMT	(Warr) Warriner's lexicon		ANEW	I EINHA KAROII	PERMA levicon				LIWC 2015			Lexicon						
	Affect	(Neg) Negative Emotion	(Pos) Positive Emotion	(Disg) Disgust	(Ang) Anger	(Sad) Sadness	Fear	Trust	(Surp) Surprise	(Joy) Joy	(Ant) Anticipation	(Val^) Valence modified	(Val) Valence	(Val) Valence	(Val^) Valence modified	(Val) Valence	(Neg) Negative Emotion	(Pos) Positive Emotion	(Anx) Anxiety	(Ang) Anger	(Sad) Sadness	(Neg) Negative Emotion	(Pos^) Positive Emotion modified	(Pos) Positive Emotion	Category	-	
33	.4	17	.05	.13	.22	.19	42	.28	23	10	45	.08	.51	- 14	.09	.42	.29	02	.17	.16	.31	.26	1.66	1.00	Pos		
.02	26	.44	.50	37	32	38	.12	28	.19	.41	.02	.45	:33	.16	.37	.47	.07	.59	.14	42	.28	28	1.00	.66	Pos^		
90	.83	91	90	.87	.97	.59	70	.46	51	78	78	20	.47	19	49	23	.73	79	.45	.94	.49	1.00	28	.26	Neg	LIW	
68	.25	32	46	.30	.40	.23	39	.24	46	19	60	.20	.59	.00	22	.07	.72	20	.66	.20	1.00	.49	.28	.31	Sad	LIWC 2015	
76	.82	87	84	.89	.94	.60	65	.44	43	80	64	29	:31	21	47	29	.53	82	.21	1.00	.20	.94	42	.16	Ang	1	
58	.24	43	47	.27	.40	03	19	01	16	26	51	.20	.50	.07	16	.02	.76	15	1.00	.21	.66	.45	.14	.17	Anx	1	Wor
.62	78	.80	.81	71	78	70	.71	56	.58	.83	.66	.59	03	.49	.63	.43	41	1.00	15	82	20	79	.59	02	\mathbf{P}_+		d-lev
82	.53	67	68	.49	.69	.19	48	.10	33	56	73	01	.49	14	42	16	1.00	41	.76	.53	.72	.73	.07	.29	p-		'el ap
.15	15	.23	.41	13	23	13	.15	.12	.09	.53	.05	.54	.52	.43	.87	1.00	16	.43	.02	29	.07	23	.47	.42	Val	AN	Word-level approaches
.42	46	.46	.58	27	47	38	.49	17	.42	.70	.43	.65	.29	.62	1.00	.87	42	.63	16	47	22	49	.37	.09	Val^	ANEW	les
.12	45	.23	.19	.04	14	31	.67	23	.50	.52	.51	.91	.50	1.00	.62	.43	- 14	.49	.07	21	.00	19	.16	- 14	Val	Warr.	
57	.32	37	31	.47	.47	.14	16	.26	20	01	39	.64	1.00	.50	.29	.52	.49	03	.50	.31	.59	.47	.33	.51	Val	Lal	
.03	43	.29	.26	06	18	40	.57	30	.43	.59	.38	1.00	.64	.91	.65	.54	01	.59	.20	29	.20	20	.45	.08	Val^	LabMT	
.79	81	.74	.68	54	74	46	.86	44	.68	.69	1.00	.38	39	.51	.43	.05	73	.66	51	64	60	78	.02	45	Ant		
.67	77	.79	.79	66	79	44	.71	32	.40	1.00	.69	.59	01	.52	.70	.53	56	.83	26	80	19	78	.4	10	Joy		
.4	58	.40	.49	34	49	60	.75	72	1.00	.40	.68	.43	20	.50	.42	.09	33	.58	16	43	46	51	.19	23	Surp	NRC	
29	.52	38	39	.50	.45	.77	61	1.00	72	32	44	30	.26	23	17	.12	.10	56	01	.44	.24	.46	28	.28	Trust	Hash	Sen
.65	81	.59	.59	55	65	60	1.00	61	.75	.71	.86	.57	16	.67	.49	.15	48	.71	19	65	39	70	.12	42	Trust Fear	NRC Hashtag Emotion	tence
39	.62	55	49	.56	.56	1.00	60	.77	60	44	46	40	.14	31	38	13	.19	70	03	.60	.23	.59	38	.19	Sad	notion	-leve
86	.82	91	89	.87	1.00	.56	65	.45	49	79	74	18	.47	14	47	23	.69	78	.40	.94	.40	.97	32	.22	Ang	-	Sentence-level approaches
76	.68	77	81	1.00	.87	.56	55	.50	34	66	54	06	.47	.04	27	13	.49	71	.27	.89	.30	.87	37	.13	Disg		roac
.81	71	.86	1.00	81	89	49	.59	39	.49	.79	.68	.26	31	.19	.58	.41	68	.81	47	84	46	90	.50	.05	Pos	Ch Sw	hes
.75	84	1.00	.86	77	91	55	.59	38	.40	.79	.74	.29	37	.23	.46	.23	67	.80	43	87	32	91	.4	17	Neg	Swiss Cheese	
70	1.00	84	71	.68	.82	.62	81	.52	58	77	81	43	.32	45	46	15	.53	78	.24	.82	.25	.83	26	.44	Affect	WWBP Lexicon	
1.00	70	.75	.81	76	86	39	.65	29	.44	.67	.79	.03	57	.12	.42	.15	82	.62	58	76	68	90	.02	33		Life Sat.	Person-level models

Table S20. Inter-correlations between Twitter's emotion and well-being measurements, calculated at the county-level.

359 References

- 1. Sharecare (2020) Gallup-sharecare well-being index.
- Pennebaker JW, Boyd RL, Jordan K, Blackburn K (2015) The development and psychometric properties of liwc2015,
 Technical report.
- 3. Seligman ME (2012) Flourish: A visionary new understanding of happiness and well-being. (Simon and Schuster).
- Schwartz HA, et al. (2013) Choosing the right words: Characterizing and reducing error of the word count approach in Second Joint Conference on Lexical and Computational Semantics (* SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic Textual Similarity. Vol. 1, pp. 296–305.
- Bradley MM, Lang PJ (1999) Affective norms for english words (anew): Instruction manual and affective ratings, (Citeseer),
 Technical report.
- Warriner AB, Kuperman V, Brysbaert M (2013) Norms of valence, arousal, and dominance for 13,915 english lemmas.
 Behavior research methods 45(4):1191–1207.
- Dodds PS, Harris KD, Kloumann IM, Bliss CA, Danforth CM (2011) Temporal patterns of happiness and information in a global social network: Hedonometrics and twitter. *PloS one* 6(12):e26752.
- 8. Mohammad SM, Kiritchenko S (2015) Using hashtags to capture fine emotion categories from tweets. *Computational* Intelligence 31(2):301–326.
- Jaggi M, Uzdilli F, Cieliebak M (2014) Swiss-chocolate: Sentiment detection using sparse svms and part-of-speech n-grams
 in Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014). pp. 601–604.
- Rieman D, Jaidka K, Schwartz HA, Ungar L (2017) Domain adaptation from user-level facebook models to county-level
 twitter predictions in *Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume Long Papers*). pp. 764–773.
- Guntuku SC, Buffone A, Jaidka K, Eichstaedt JC, Ungar LH (2019) Understanding and measuring psychological stress
 using social media in *Proceedings of the International AAAI Conference on Web and Social Media*. Vol. 13, pp. 214–225.
- Preoţiuc-Pietro D, et al. (2016) Modelling valence and arousal in facebook posts in Proceedings of the 7th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis. pp. 9–15.
- 13. Schwartz HA, et al. (2013) Personality, gender, and age in the language of social media: The open-vocabulary approach.
 PloS one 8(9):e73791.
- Park G, et al. (2015) Automatic personality assessment through social media language. Journal of personality and social psychology 108(6):934.
- 15. Blei D, Ng A, Jordan M (2003) Latent dirichlet allocation journal of machine learning research. 3:993–1022.
- Jaidka K, Guntuku SC, Buffone A, Schwartz HA, Ungar L (2018) Facebook vs. twitter: Differences in self-disclosure and trait prediction in *Proceedings of the International AAAI Conference on Web and Social Media*.
- 17. Jaidka K, Zhou A, Lelkes Y (2019) Brevity is the soul of twitter: The constraint affordance and political discussion.
 Journal of Communication 69(4):345-372.
- 18. Guntuku SC, Yaden DB, Kern ML, Ungar LH, Eichstaedt JC (2017) Detecting depression and mental illness on social
 media: an integrative review. *Current Opinion in Behavioral Sciences* 18:43–49.
- 19. Sap M, et al. (2014) Developing age and gender predictive lexica over social media in *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*. (Association for Computational Linguistics, Doha, Qatar), pp. 1146–1151.
- 20. Bureau UC (2015) 2010-2015 american community survey 5-year estimates.
- Howell RT, Howell CJ (2008) The relation of economic status to subjective well-being in developing countries: A
 meta-analysis. *Psychological bulletin* 134(4):536.
- 401 22. Jebb AT, Tay L, Diener E, Oishi S (2018) Happy states of america: A state level analysis of psychological, economic and
 402 social well-being. Nature Human Behaviour 2(1):33.
- 403 23. Kahneman D, Deaton A (2010) High income improves evaluation of life but not emotional well-being. Proceedings of the
 404 national academy of sciences 107(38):16489-16493.
- Eichstaedt JC, et al. (2015) Psychological language on twitter predicts county-level heart disease mortality. *Psychological science* 26(2):159–169.
- 407 25. Hoover J, Dehghani M (2018) The big, the bad, and the ugly: Geographic estimation with flawed psychological data.
 408 PsyArXiv.
- 409 26. Giorgi S, Ungar LH, Schwartz HA (In press) Correcting sociodemographic selection biases for population prediction. arXiv preprint.
- 411 27. Holt D, Smith TF (1979) Post stratification. Journal of the Royal Statistical Society: Series A (General) 142(1):33-46.
- 28. Little RJ (1993) Post-stratification: a modeler's perspective. Journal of the American Statistical Association 88(423):1001–
 1012.
- 414 29. Gelman A, Little TC (1997) Poststratification into many categories using hierarchical logistic regression.
- 30. Henry K, Valliant R (2012) Methods for adjusting survey weights when estimating a total. Proceedings of the Federal
 Committee on Statistical Methodology, January pp. 10–12.
- 417 31. Deville JC, Särndal CE, Sautory O (1993) Generalized raking procedures in survey sampling. Journal of the American
 418 statistical Association 88(423):1013–1020.
- 419 32. Fienberg SE, , et al. (1970) An iterative procedure for estimation in contingency tables. The Annals of Mathematical

420 Statistics 41(3):907-917.

- 421 33. Kalton G, Flores-Cervantes I (2003) Weighting methods. Journal of official statistics 19(2):81.
- 34. Stephan FF (1942) An iterative method of adjusting sample frequency tables when expected marginal totals are known.
 Ann. Math. Statist. 13(2):166–178.
- 424 35. Bureau UC (2010) Census regions and divisions of the united states. US Census Bureau website.
- Giorgi S, et al. (2018) The remarkable benefit of user-level aggregation for lexical-based population-level predictions in
 Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.
- 427 37. Matz SC, Menges JI, Stillwell DJ, Schwartz HA (2019) Predicting individual-level income from facebook profiles. *PloS* 428 one.
- 429 38. Jaidka K, Eichstaedt jC, Giorgi S (2020) Data and resources for estimating geographic subjective well-being from twitter:
 430 a comparison of dictionary and data-driven language methods.
- 39. Rahman J (2012) The n word: Its history and use in the african american community. Journal of English Linguistics
 40(2):137-171.
- 433 40. McCulloch G (2019) Because Internet: Understanding the New Rules of Language. (Riverhead Books).
- 41. Florini S (2014) Tweets, tweeps, and signifyin' communication and cultural performance on "black twitter". Television &
 New Media 15(3):223-237.
- 436 42. Brock A (2012) From the blackhand side: Twitter as a cultural conversation. Journal of Broadcasting & Electronic Media
 437 56(4):529-549.
- 43. Pennebaker JW, Lay TC (2002) Language use and personality during crises: Analyses of mayor rudolph giuliani's press
 439 conferences. Journal of Research in Personality 36(3):271–282.
- 440 44. Hitlin P (2016) Turkers in this canvassing: young, well-educated and frequent users. Pew Research Center.